Follow-up for contingency table test
Usage
chisq_pairwise(
Xsq,
population_in_row = TRUE,
adjust = stats::p.adjust.methods,
effect_size = c("V", "phi"),
ci = 0.95,
...
)
chisq_residual(
Xsq,
adjust = stats::p.adjust.methods,
res_type = c("pearson", "standardized"),
ci = 0.95
)
Arguments
- Xsq
Result from
chisq.test()
- population_in_row
Comparisons by row? (If not, by column.)
- adjust
Method for correcting p-values. See
stats::p.adjust
.- effect_size
Type of effect size to use.
- ci
Confidence Interval (CI) level
- ...
Passed to
chisq.test()
.- res_type
Type of residuals to use.
Examples
M <- as.table(rbind(
c(762, 327, 468),
c(484, 239, 477)
))
dimnames(M) <- list(
gender = c("F", "M"),
party = c("Democrat", "Independent", "Republican")
)
M
#> party
#> gender Democrat Independent Republican
#> F 762 327 468
#> M 484 239 477
res <- chisq.test(M)
chisq_pairwise(res)
#> comparison Chi.sq df V V.CI_low V.CI_high p.raw p.holm
#> 1 F vs. M 30.07015 2 0.10092 0.06570276 1 2.953589e-07 2.953589e-07
chisq_pairwise(res, population_in_row = FALSE)
#> comparison Chi.sq df V V.CI_low V.CI_high
#> 1 Democrat vs. Independent 1.717892 1 0.02173696 0.00000000 1
#> 2 Democrat vs. Republican 29.059545 1 0.11413683 0.07810062 1
#> 3 Independent vs. Republican 9.335659 1 0.07574388 0.02750054 1
#> p.raw p.holm
#> 1 1.899646e-01 1.899646e-01
#> 2 7.018745e-08 2.105623e-07
#> 3 2.247373e-03 4.494746e-03
chisq_residual(res)
#> gender party z.value n.obs d d.CI_low d.CI_high
#> 1 F Democrat 2.1988558 762 0.07965614 0.008654136 0.15065814
#> 2 M Democrat -2.5046695 484 -0.11384861 -0.202937885 -0.02475934
#> 3 F Independent 0.4113702 327 0.02274882 -0.085637434 0.13113508
#> 4 M Independent -0.4685829 239 -0.03031011 -0.157089642 0.09646942
#> 5 F Republican -2.8432397 468 -0.13142880 -0.222028170 -0.04082944
#> 6 M Republican 3.2386734 477 0.14828867 0.058548084 0.23802926
#> p.raw p.holm
#> 1 0.027888180 0.083664539
#> 2 0.012256586 0.049026346
#> 3 0.680801124 1.000000000
#> 4 0.639367769 1.000000000
#> 5 0.004465747 0.022328734
#> 6 0.001200870 0.007205219